Stable Lifting Construction of Non-Uniform Biorthogonal Spline Wavelets with Compact Support
نویسندگان
چکیده
In this paper we use the lifting scheme to construct biorthogonal spline wavelet bases on regularly refined non-uniform grids. The wavelets have at least one vanishing moment and on each resolution level they form an L2 Riesz basis. Furthermore we are interested in determining the exact range of Sobolev exponents for which the complete multilevel system forms a Riesz basis. Hereto we need to examine the smoothness of the dual scaling functions which involves investigation of the spectral properties of the associated transition operator. We provide several examples and discuss their stability. Furthermore we also give a strategy to construct biorthogonal spline wavelets on uniform grids.
منابع مشابه
Biorthogonal Spline Type Wavelets
Let φ be an orthonormal scaling function with approximation degree p−1, and let Bn be the B-spline of order n. Then, spline type scaling functions defined by f̄n = f ∗Bn (n = 1, 2, . . . ) possess higher approximation order, p+n−1, and compact support. The corresponding biorthogonal wavelet functions are also constructed. This technique is extended to the case of biorthogonal scaling function sy...
متن کاملSingle-knot wavelets for non-uniform B-splines
We propose a flexible and efficient wavelet construction for non-uniform B-spline curves and surfaces. The method allows to remove knots in arbitrary order minimizing the displacement of control points when a knot is re-inserted. Geometric detail subtracted from a shape by knot removal is represented by an associated wavelet coefficient replacing one of the control points at a coarser level of ...
متن کاملConstruction of Biorthogonal Discrete Wavelet Transforms Using Interpolatory Splines
We present a new family of biorthogonal wavelet and wavelet packet transforms for discrete periodic signals and a related library of biorthogonal periodic symmetric waveforms. The construction is based on the superconvergence property of the interpolatory polynomial splines of even degrees. The construction of the transforms is performed in a “lifting” manner that allows more efficient implemen...
متن کاملConstruction of compactly supported biorthogonal wavelets
This paper presents a construction of compactly supported biorthogonal spline wavelets in L2(IR ). In particular, a concrete method for the construction of bivariate compactly supported biorthogonal wavelets from box splines of increasing smoothness is provided. Several examples are given to illustrate the method. Key-Words:multivariate biorthogonal wavelets, multivariate wavelets, box splines,...
متن کاملOn Image Compression by Biorthogonal Wavelet Transforms Based on Discrete Splines
We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal symmetric wavelets. We employed the interpolatory continuous and discrete splines as a tool for devising a discrete biorthogonal wavelet scheme. The construction is based on the \lifting scheme" presented by Sweldens in [1]. The lifting scheme allows custom design and fast implementation of the tran...
متن کامل